Post-translational regulation of human indoleamine 2,3-dioxygenase activity by nitric oxide.

نویسندگان

  • Shane R Thomas
  • Andrew C Terentis
  • Hong Cai
  • Osamu Takikawa
  • Aviva Levina
  • Peter A Lay
  • Mohammed Freewan
  • Roland Stocker
چکیده

The heme protein indoleamine 2,3-dioxygenase (IDO) is induced by the proinflammatory cytokine interferon-gamma (IFNgamma) and plays an important role in the immune response by catalyzing the oxidative degradation of L-tryptophan (Trp) that contributes to immune suppression and tolerance. Here we examined the mechanism by which nitric oxide (NO) inhibits human IDO activity. Exposure of IFNgamma-stimulated human monocyte-derived macrophages (MDM) to NO donors had no material impact on IDO mRNA or protein expression, yet exposure of MDM or transfected COS-7 cells expressing active human IDO to NO donors resulted in reversible inhibition of IDO activity. NO also inhibited the activity of purified recombinant human IDO (rhIDO) in a reversible manner and this correlated with NO binding to the heme of rhIDO. Optical absorption and resonance Raman spectroscopy identified NO-inactivated rhIDO as a ferrous iron (Fe(II))-NO-Trp adduct. Stopped-flow kinetic studies revealed that NO reacted most rapidly with Fe(II) rhIDO in the presence of Trp. These findings demonstrate that NO inhibits rhIDO activity reversibly by binding to the active site heme to trap the enzyme as an inactive nitrosyl-Fe(II) enzyme adduct with Trp bound and O2 displaced. Reversible inhibition by NO may represent an important mechanism in controlling the immune regulatory actions of IDO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoleamine 2,3-dioxygenase (ido) and Immune Tolerance

The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS) and nitric oxide (NO) radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROSRNS) and other redox act...

متن کامل

Nitric oxide-mediated regulation of gamma interferon-induced bacteriostasis: inhibition and degradation of human indoleamine 2,3-dioxygenase.

Tryptophan depletion resulting from indoleamine 2,3-dioxygenase (IDO) activity within the kynurenine pathway is one of the most prominent gamma interferon (IFN-gamma)-inducible antimicrobial effector mechanisms in human cells. On the other hand, nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) serves a more immunoregulatory role in human cells and thereby interacts with...

متن کامل

Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...

متن کامل

Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Indoleamine 2,3-dioxygenase versus inducible nitric oxide synthase.

In infectious diseases, interferon-gamma (IFN-gamma) is generally accepted as one of the most important inducers of antimicrobial and immunoregulatory effects, and both seemingly contradictory effects, can be mediated by the same effector molecules. In detail, several IFN-gamma induced enzymes such as the inducible nitric oxide synthase (iNOS) as well as the indoleamine 2,3-dioxygenase (IDO) al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 33  شماره 

صفحات  -

تاریخ انتشار 2007